If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25y^2+3y=0
a = 25; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·25·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*25}=\frac{-6}{50} =-3/25 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*25}=\frac{0}{50} =0 $
| 7x+14=8x | | 12x5=98+6 | | -70.46=0+0.5(-9.81)t^2 | | (13x+6)=(8x+6) | | -3x+8=3x-4 | | 1/99=1/n+2 | | 70-10=1/4n | | 2/3x+(4)=-8 | | t/2+23=32 | | 64x+48=-6x | | (3x+5)°=(10x−7)° | | (7x+5)=(9x-13) | | 2d-18=32 | | x+3/4=9/10 | | 10x=9+4x-9 | | 6.78x-5.2=4.33x2.15 | | 10+7s=80 | | 4k=10+9k | | 10+7a=10 | | x=3.9=7.9 | | 2/7m-1/7=3/17 | | 5(f+3)=30 | | 7x+9=98 | | e(4e+5)=0 | | 6v/3-10=-14 | | 12x=42x+3 | | 25+2q=-35 | | 20=x/4x= | | 3x+8=4x+ | | q^2-100q=4 | | 8(4x-1)=-232 | | 3x+6x-5=35 |